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Abstract—The codewords of weight 4 of every extended perfect binary code that contains the all-
zero vector are known to form a Steiner quadruple system. We propose a modification of the Lindner
construction for the Steiner quadruple system of order N = 2r which can be described by special
switchings from the Hamming Steiner quadruple system. We prove that each of these Steiner
quadruple systems is embedded into some extended perfect binary code constructed by the method
of switching of ijkl-components from the binary extended Hamming code. We give the lower bound
for the number of different Steiner quadruple systems of order N with rank at most N − log N + 1
which are embedded into extended perfect codes of length N .
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INTRODUCTION

Let F
n be the n-dimensional metric space over the Galois field GF (2) with the Hamming metric.

A binary code of length n is an arbitrary subset of F
n. The parameters of an arbitrary binary code C

from F
n are denoted by (n, |C|, d), where n is the length of codewords (the code elements), |C| is the

cardinality of the code, and d is the code distance (i.e., the minimal Hamming distance between all
codewords). The support supp(x) of a vector x from F

n is the set of nonzero coordinate positions of x.
A binary code C of length n with distance d = 2d′ + 1 is called perfect if, for every x ∈ F

n, there exists
a unique x′ from C such that the Hamming distance d(x, x′) is equal to (d − 1)/2. It is known [7] that
a nontrivial perfect binary code correcting one error (further referred as perfect) exists if and only if
n = 2r − 1 for some integer r ≥ 2.

If V is a set of v elements then a t-(v, k, λ)-design is a set of blocks designed from elements of v such
that each block contains exactly k different elements and each t-element subset from V appears exactly
in λ blocks. A Steiner triple system of order v (denote it by STS(v)) and a Steiner quadruple system
of order v (denote it by SQS(v)) are 2-(v, 3, 1)- and 3-(v, 4, 1)-designs correspondingly. Two Steiner
quadruple systems are isomorphic if there is a bijection of the sets of v elements which maps all blocks
of one system into the blocks of the other. It is known [10] that a Steiner quadruple system SQS(v)
exists if and only if v ≡ 2, 4 (mod 6); and the best lower [14] and upper [12] bounds of the number N(v)
of all nonisomorphic Steiner quadruple systems of order v has the form

2v3/24 ≤ N(v) ≤ 2v3 log v(1+o(1))/24 .

Let C be an extended perfect code, obtained from the perfect code C of length 2r − 1, r ≥ 2, by
adding the total even parity (i.e., by adding a coordinate equal to the sum of other coordinates modulo 2).
Further we consider only perfect (and hence, extended perfect as well) codes that contain the zero vector.
It is known [7] that supports of all codewords of weight 3 in a code C form the Steiner triple system
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STS(2r − 1), and supports of the codewords of weight 4 in the code C form the Steiner quadruple system
SQS(2r).

It is said [1] that the code C ′ = (C\M) ∪M ′ is obtained by switching of M to M ′ in a binary code C
if C ′ has the same parameters as C. Such M is called a component of C. If M ′ = M ⊕ ei for some
i ∈ {1, 2, . . . , n}, where ei is a vector of weight 1 with 1 in the ith coordinate position, then M is called
the i-component of C of length n. Let α ⊆ {1, . . . , n}. A set is called an α-component of a code C if it
is the i-component for each i ∈ α [1].

Similarly we define the notion of switching for t-(v, k, 1)-design. Two sets R and R′ that consist of k-
element subsets of a set V are called balanced to each other if every unordered subset with t elements
that can be found in the k-element subsets of one set appears also in the k-element subsets of the other
one. It is said that the t-(v, k, 1)-design A′ = (A\R)∪R′ is obtained by switching of the set of blocks R
to the set of blocks R′ in t-(v, k, 1)-design A if R and R′ are the balanced sets [2, 6, 8] (see the definition
of balanced sets in [8]). In [6], such set R (as well as a set R′) is called a component.

There are many open questions concerning Steiner triple and quadruple systems including the
problem of classification of these systems and the problem of an embeddability of a Steiner triple
(quadruple) system into a perfect (extended perfect) code.

A question of a correspondence between different constructions for a Steiner triple (quadruple)
systems and constructions for the perfect (extended perfect) binary codes is also of interest; e.g.,
connection between the switching and concatenation constructions for these objects.

In [16] it is proved that only 33 of 80 nonisomorphic Steiner triple systems of order 15 are embedded
into perfect codes and only 15590 of 1054163 Steiner quadruple systems of order 16 are embedded into
extended perfect codes.

The rank of a code C is the dimension of the linear subspace of F
n, spanned by the vectors from C. It

is known that the rank of a Steiner triple system STS(2r−1) (a Steiner quadruple system SQS(2r)) is
varied from 2r − r − 1, the rank of the Hamming code (the linear perfect code) of length 2r − 1 [11, 17],
up to the full rank 2r − 1.

In [19], the number is found of different Steiner triple systems of order 2r − 1 with rank 2r − r that
exceeds the minimal possible rank by 1; and, in [18], a similar formula is obtained for the number of
different Steiner quadruple systems of order 2r with rank 2r − r.

Recall that a parallel class in 3-(v, 4, 1)-design, v ≡ 0 (mod 4), is defined as a set of v/4 blocks that
are pairwise disjoint (in other words, a parallel class is a trivial 1-(v, 4, 1)-design). The Steiner quadruple
system in which the set of blocks can be divided into the r = (v − 1)(v − 2)/6 disjoint parallel classes is
called resolvable. In [5], the constructions are given that provide all different Steiner quadruple systems
of order N = 2r with rank at most 2r − r + 1. It is proved there that all these systems are resolvable, and
the number is found of different resolvable Steiner quadruple systems that have one fixed parallel class:

2N+2 · (N/4)! · 6N(N−4)/25 · 55296N(N−4)(N−8)/(3·29 )

N(N − 4)(N − 8) · · · (N − N/2)
. (1)

Thereafter, taking it into account that there exist N !/24N/4 such different parallel classes, we can easily
find the number of all different Steiner quadruple systems provided by these constructions from the
Steiner quadruple systems of order N/4 with rank at most 2r − r + 1:

2N+2 · N ! · (N/4)! · 6N(N−4)/25 · 55296N(N−4)(N−8)/(3·29 )

24N/4 · N(N − 4)(N − 8) · · · (N − N/2)
. (2)

In [4], it is shown that the class of Steiner triple systems of order 2r − 1, obtained by special
switchings from the Hamming Steiner triple system, is embedded into the class of perfect codes
constructed by the ijk-components method, and the lower bound is given for the number of the Steiner
triple systems of order 2r − 1 with rank at most 2r − r + 1.

Our work addresses the following question: Which Steiner quadruple systems are embedded into the
extended perfect binary codes constructed by the known ijkl-components method from the Hamming
code? For this purpose we introduce a switching construction of the Steiner quadruple system SQS(N),
constructed from an arbitrary Steiner quadruple system SQS(m), N = 4m, and based on the Lindner
construction. It is shown that the partition SQS(N) for N = 2r into the subsets-components of a
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certain form corresponds to some partition of the extended perfect code into the ijkl-components and,
moreover, such Steiner quadruple system is embedded into the extended perfect code constructed by
the ijkl-components method. We obtain the lower bound on the number of different Steiner quadruple
systems SQS(N) with rank at most N − log N + 1 which are embedded into an extended perfect code.

1. STEINER QUADRUPLE SYSTEMS SQS(4m)
EMBEDDABLE INTO AN EXTENDED PERFECT CODE

Consider a construction of a Steiner quadruple system SQS(N) of order N = 4m which is built
from the Steiner quadruple system SQS(m) of order m and is a switching construction based on the
Lindner construction [15] which, in turn, is a generalization of the known Hanani construction [13].
By construction, some of these SQS(4m) are embedded into extended perfect codes.

For completeness we consider the Lindner construction [15].
Let M = {1, 2, 3, . . . ,m} be a set on which an arbitrary Steiner quadruple system SQS(m) is defined,

where m ≡ 2, 4 (mod 6). On the set of elements

M ∪ {i1, . . . , im, j1, . . . , jm, k1, . . . , km}
we construct some quadruple system of order 4m, which is further referred as QN , N = 4m, and we
show that it is a Steiner quadruple system. For this purpose we consider the table

TM =

1 2 3 . . . m

i1 i2 i3 . . . im

j1 j2 j3 . . . jm

k1 k2 k3 . . . km

.

First, for clarity, we describe the construction of SQS(4m) in the particular case when m = 4. Let, for
example, SQS(4) = {(a, b, c, d)}. In this case, the Steiner quadruple system SQS(4m) has the order 16,
and TM takes the form

a b c d

ia ib ic id

ja jb jc jd

ka kb kc kd

.

Denote this table by Tabcd. Constructing SQS(16), we do the following: Include into the set of
quadruples being under construction all rows and columns from Tabcd as well as the quadruples obtained
from each pair of rows and columns that can be schematically represented as follows:

� ���
� � � �

�� � � ���
�

�� ���
� �

�� ���
�

�� � ���
� �

�� �

�

�� � ���
�

(3)

For example, for the first pair of rows we get quadruples

{(ia, ib, c, d), (a, b, ic, id), (ia, b, ic, d), (a, ib, c, id), (ia, b, c, id), (a, ib, ic, d)}.
We also include all minors of the second order, i.e., the quadruples

{(a, b, ia, ib), (a, b, ja, jb), (a, b, ka, kb), (a, c, ia, ic), (a, c, ja, jc),
(a, c, ka, kc), (a, d, ia, id), (a, d, ja, jd), (a, d, ka, kd), (b, c, ib, ic),
(b, c, jb, jc), (b, c, kb, kc), (b, d, ib, id), (b, d, jb, jd), (b, d, kb, kd),
(c, b, ic, id), (c, d, jc, jd), (c, d, kc, kd), (ia, ib, ja, jb), (ia, ib, ka, kb),
(ja, jb, ka, kb), (ia, ic, ja, jc), (ia, ic, ka, kc), (ja, jc, ka, kc), (ia, id, ja, jd),
(ia, id, ka, kd), (ja, jd, ka, kd), (ib, ic, jb, jc), (ib, ic, kb, kc), (jb, jc, kb, kc),
(ib, id, jb, jd), (ib, id, kb, kd), (jb, jd, kb, kd), (ic, id, jc, jd), (ic, id, kc, kd),
(jc, jd, kc, kd)}. (4)
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Also we add to this set all possible combinations of elements that are located in different rows and
columns of Tabcd (all transversals of Tabcd), i.e., the set of quadruples of the form

{(a, ib, jc, kd), (a, ib, jd, kc), (a, ic, jb, kd), (a, id, jb, kc), (a, ic, jd, kb),
(a, id, jc, kb), (b, ia, jc, kd), (b, ia, jd, kc), (b, ic, ja, kd), (b, id, ja, kc),
(b, ic, jd, ka), (b, id, jc, ka), (c, ia, jb, kd), (c, ia, jd, kb), (c, ib, ja, kd),
(c, id, ja, kb), (c, ib, jd, ka), (c, id, jb, ka), (d, ia, jb, kc), (d, ia, jc, kb),
(d, ib, ja, kc), (d, ic, ja, kb), (d, ib, jc, ka), (d, ic, jb, ka)}. (5)

Given the fact that the construction includes 4 rows, 4 columns, 6 quadruples of the form (3), applied to
each of C2

4 rows and C2
4 columns of the table, 6 ·C2

4 minors, and 24 quadruples (transversals of the table
Tabcd), the total number of obtained quadruples equals

4 + 4 + 2 · 6 · C2
4 + 6 · C2

4 + 24 = 140;

i.e., coincides with the number of blocks in SQS(16). By the construction of quadruples, each unordered
triple of elements is contained in a unique block. Thus, given SQS(4), we construct the system
SQS(16).

Let m be an arbitrary number such that there exists SQS(m). Then we include into the constructed
set of quadruples QN , where N = 4m, all columns and also, for each pair of columns, all minors of the
form (4) and quadruples of the form (3). Thus, we obtain

m + 6 · C2
m + 6 · C2

m = m + 6m(m − 1)

quadruples. Then, given a quadruple (a, b, c, d) from SQS(m), consider a submatrix Tabcd. For this
matrix, into the set QN we include (a, b, c, d), remaining rows, the quadruples of the form (3) applied
to each pair of rows of Tabcd, and the quadruples of the form (5).

It is easy that 1 + 3 + 6 · C2
4 + 4 · 6 = 64 quadruples correspond to each matrix of the form Tabcd

in QN . The number of the tables is equal to the number of the quadruples in SQS(m), i.e., m(m −
1)(m − 2)/24. Hence, the total number of quadruples in the construction equals

m + 6m(m − 1) + 64 · m(m − 1) · (m − 2)/24 = 4m(4m − 1) · (4m − 2)/24 = |QN |.

By construction of the set of quadruples, each unordered triple of elements appears exactly in one
quadruple. Thus, the Steiner quadruple system QN of order N = 4m is constructed from the Steiner
quadruple system SQS(m) of order m and the following holds:

Theorem 1 [15]. Given an arbitrary Steiner quadruple system of order m, it is possible to
construct a Steiner quadruple system of order 4m.

Recall that, in the original Hanani construction [13], the system SQS(2n) of order 2n is constructed
from the system SQS(n) for every admissible n, and, in Lindner construction [15], system SQS(n · t)
of order n · t is constructed from the two systems SQS(n) and SQS(t) for every admissible n and t.
The Steiner quadruple system of order N that corresponds to the binary extended Hamming code HN is
called the Hamming Steiner quadruple system SQS(HN ). It is easy to show the following

Corollary 1. If SQS(m) is a Hamming Steiner quadruple system then the quadruple system
QN with N = 4m is a Hamming Steiner quadruple system of order N .

We introduce a special type of components for extended perfect codes and a quadruple system of the
extended Hamming code. Let K be an i-component of the Hamming code of length N − 1 with N = 2r

and r ≥ 3 [1]. A set K is called an il-component of the extended Hamming code of length N obtained
from the Hamming code by adding parity checking to the lth coordinate position, l ∈ {1, . . . , N}\i.
Similarly we can define jl-, kl-, and ij-, ik-, jk-components of the extended Hamming code. Let
x denote an arbitrary codeword of the extended Hamming code such that supp(x) = {i, j, k, l}. A set
M is called ijkl-component of the extended Hamming code if M is s1s2-component of the extended
Hamming code for any different s1 and s2 from {i, j, k, l}. Note that il- and jk-, jl- and ik-, kl- and
ij-component of the extended Hamming code are pairwise equal.
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A set Q is called an il-component of the Hamming Steiner quadruple system SQS(HN ) if Q is
a subset of vectors of weight 4 from the il-component of the extended Hamming code HN of length N .
If an il-component of the Steiner quadruple system Q is also a jl-component and kl-component then
Q is called the ijkl-component of SQS(HN ).

Note that the definition of component in [6] is more general. The minimal components of order 8 and
cardinality 8 studied there are equal to the s1s2-components of the Hamming Steiner quadruple system
defined above, whereas the ijkl-components are not considered in [6].

Theorem 2 [1]. Let {i, j, k, l} denote the support of an arbitrary vector of weight 4 of any
extended binary Hamming code HN of length N . Then HN can be represented as the union of
the disjoint ijkl-components Rt

ijkl; and, moreover, each of them can be represented as the union

of the disjoint il-components Rpt
il :

HN =
N2−1⋃

t=0

Rt
ijkl =

N2−1⋃

t=0

N1−1⋃

p=0

Rpt
il ,

where N1 = 2(N−4)/4 and N2 = 2(N+4)/4−log N .

These partitions allow us to perform switchings of the extended Hamming code and obtain a wide
class of extended perfect codes as a result.

Further we consider the components of the Steiner quadruple system that correspond to the subsets
of components R0

ijkl, R
p0
il , Rαt

ijkl, and Rpαt

il of the extended perfect code containing this quadruple system.
We denote them by Rijkl, Rp

il, Rαt
ijkl, and Rpαt

il correspondingly.

Lemma 1. Let {i, j, k, l} be the support of any weight 4 vector of an extended Hamming binary
code of length N . Then the Hamming Steiner quadruple system SQS(HN ) can be represented as
the union of 1 + N(N − 4)(N − 8)/(3 · 29) disjoint ijkl-components; and, in turn, each of them is
the union of either N/4 + (N − 4)(N − 8)/25 or 8 disjoint il-component.

Proof. Without loss of generality, let some column of TM corresponds to the quadruple (i, j, k, l) from
SQS(Hm).

By Theorem 2,

Rijkl =
N1⋃

p=1

Rp
il,

where R1
il is the linear span of vectors with support {(i, a, ia, l), (i, j, k, l), (i, ja , ka, l) | a ∈ M ′ = M\l}.

Further, Ril = R1
il. We represent the remaining Rp

il with p > 1 as all possible cosets of Ril. Note
that (j, a, ja, l) ∈ Rijkl and (j, a, ja, l) /∈ Ril for each a ∈ M ′, while, for different elements a and b
from M ′, (j, a, ja, l) /∈ Ril + (j, b, jb, l). Therefore, there exist N/4 − 1 cosets of Ril of the form Ril +
(j, a, ja, l), where a ∈ M ′. Further, it is easy that (j, a, ja, l) + (j, b, jb, l) ∈ Rijkl and (j, a, ja, l) +
(j, b, jb, l) /∈ Ril for every different a and b from M ′, (j, a, ja, l) + (j, b, jb, l) /∈ Ril + (j, c, jc, l) for every
pairwise different a, b, and c from M ′, and (j, a, ja, l) + (j, b, jb, l) /∈ Ril + (j, c, jc, l) + (j, d, jd, l) for
every pairwise different a, b, c, and d from M ′. Therefore, there exist

C2
N/4−1 = (N/4 − 1)(N/4 − 2)/2 = (N − 4)(N − 8)/25

cosets of Ril of the form Ril + (j, a, ja, l) + (j, b, jb, l), where a and b are different elements from M ′.
By similar reasoning for the cosets of Ril of the form

Ril + (j, a, ja, l) + (j, b, jb, l) + (j, c, jc, l), . . . , Ril + (j, a, ja, l) + (j, b, jb, l) + · · · + (j,m′, jm′ , l),

taking into account that

1 + (N/4 − 1) + C2
N/4−1 + C3

N/4−1 + · · · + C
N/4−1
N/4−1 = 2N/4−1 = N1,
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we obtain

Rp
il = Ril + (j, a, ja, l) for all a ∈ M ′ and 2 ≤ p ≤ N/4;

Rp
il = Ril + (j, a, ja, l) + (j, b, jb, l) for different elements a and b from M ′, where 1 + N/4 ≤ p ≤

N/4 + (N − 4)(N − 8)/25;

Rp
il = Ril + (j, a, ja, l) + (j, b, jb, l) + (j, c, jc, l) for different elements a, b, and c from M ′ for

1 + N/4 + (N − 4)(N − 8)/25 ≤ p ≤ N/4 + (N − 4)(N − 8)/25 + (N − 4)(N − 8)(N − 12)/(3 · 27);

RN1
il = Ril + (j, a, ja, l) + (j, b, jb, l) + · · · + (j,m′, jm′ , l), M ′ = {a, b, . . . ,m′}.

Therefore, for the Steiner quadruple system SQS(HN ), the following holds: The component Rijkl for
SQS(HN ) contains all columns of TM as well as the minors (4) and the blocks of the form (3) for each
pair of columns of the table.

More specifically,

Rijkl =

N/4+(N−4)(N−8)

25⋃

p=1

Rp
il,

where Ril = {(i, j, k, l), (i, a, ia, l), (i, ja, ka, l), (a, ia, ja, ka), (a, ia, j, k), (j, k, ja, ka) for all a ∈
M ′; (a, ia, jb, kb), (a, b, ia, ib), (ja, ka, jb, kb) for every different a and b from M ′}; i.e., Ril contains all

columns of the table, some minors and quadruples of the form � ���
� �

and
� �

�� � � for each pair of
columns of the table.

For all components of the form Rp
il ⊂ Ril + (j, a, ja, l) with 2 ≤ p ≤ N/4 and all a ∈ M ′, we have

Rp
il = {(ia, j, ka, l), (ia, ja, k, l), (a, i, ja, k), (a, i, j, ka), (j, a, ja, l),

(k, a, ka, l), (i, j, ia, ja), (i, k, ia, ka)};

i.e., for 2 ≤ p ≤ 4, Rp
il contains some minors and quadruples from (3) of the form ���

�

�� ���
� �

�� ���
�

�� �

and ���
� �

�� �

�

�� � ���
�

for the pair of columns (i, j, k, l) and (a, ia, ja, ka)T and all a ∈ M ′.

Since

Rp
il ⊂ Ril + (j, a, ja, l) + (j, b, jb, l), N/4 + 1 ≤ p ≤ N/4 + (N − 4) · (N − 8)/25,

for every different a, b ∈ M ′; therefore,

Rp
il = {(a, ib, ja, kb), (a, ib, jb, ka), (b, ia, jb, ka), (b, ia, ja, kb), (a, ja, b, jb),

(a, ka, b, kb), (ia, ja, ib, jb), (ia, ka, ib, kb)};

i.e., for N/4 + 1 ≤ p ≤ N/4 + (N − 4)(N − 8)/25, Rp
il contains some minors and quadruples from (3)

of the form ���
�

�� ���
� �

�� ���
�

�� � and ���
� �

�� �

�

�� � ���
�

for the pair of columns (a, ia, ja, ka) and
(b, ib, jb, kb)T and every different a and b from M ′.

Further, Rαt
ijkl = Rijkl + αt, where αt ∈ SQS(m); therefore

Rαt
ijkl =

8⋃

p=1

Rpαt

il .

Let us give an example of the partition for the component Rα1
ijkl = Rabcl

ijkl = Rijkl + (a, b, c, l) partition.
The structures of the other components Rαt

ijkl with 2 ≤ t ≤ m(m − 1)/6, where αt ∈ SQS(m), look
similarly.
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Consider the table

Tabcl =

l a b c

i ia ib ic

j ja jb jc

k ka kb kc

.

The first il-component consists of the first two rows (a, b, c, l) and (i, ia, ib, ic) of this table, and also of

the quadruples of form (3) built on these rows:

R1α1
il = {(a, b, c, l), (i, ia, ib, ic), (a, ib, ic, l), (i, ia, b, c),

(ia, b, ic, l), (i, a, ib, c), (ia, ib, c, l), (i, a, b, ic)}.
Remaining il-components are as follows:

R2α1
il = {(j, ja, b, c), (j, ja, ib, ic), (k, ka, b, c), (k, ka, ib, ic),

(j, ka, b, ic), (k, ja, b, ic), (j, ka, ib, c), (k, ja, ib, c)},

R3α1
il = {(j, a, jb, c), (j, ia, jb, ic), (k, a, kb, c), (k, ia, kb, ic),

(j, a, kb, ic), (k, a, jb, ic), (j, ia, kb, c), (k, ia, jb, c)},

R4α1
il = {(j, a, b, jc), (j, ia, ib, jc), (k, a, b, kc), (k, ia, ib, kc),

(j, a, ib, kc), (k, a, ib, jc), (j, ia, b, kc), (k, ia, b, jc)},

R5α1
il = {(ja, jb, c, l), (ka, kb, c, l), (i, ja, jb, ic), (i, ka, kb, ic),

(ja, kb, ic, l), (ka, jb, ic, l), (i, ja, kb, c), (i, ka, jb, c)},

R6α1
il = {(ja, b, jc, l), (ka, b, kc, l), (i, ja, ib, jc), (i, ka, ib, kc),

(ja, ib, kc, l), (ka, ib, jc, l), (i, ja, b, kc), (i, ka, b, jc)},

R7α1
il = {(a, jb, jc, l), (a, kb, kc, l), (i, ia, jb, jc), (i, ia, kb, kc),

(ia, jb, kc, l), (ia, kb, jc, l), (i, a, jb, kc), (i, a, kb, jc)}.

The component R8α1
il consists of the two last rows (j, ja, jb, jc) and (k, ka, kb, kc) of Tabcl, and also of

quadruples of the form (3) built on these rows:

R8α1
il = {(j, ja, jb, jc), (k, ka, kb, kc), (j, ja, kb, kc), (k, ka, jb, jc),

(j, ka, jb, kc), (k, ja, kb, jc), (j, ka, kb, jc), (k, ja, jb, kc)}.

For Rαt
ijkl were 2 ≤ t ≤ N(N − 4)(N − 8)/(3 · 29), we have

Rαt
ijkl =

8⋃

p=1

Rpαt

il ;

at that, Rpαt

il are constructed similarly to the previous case but each time for their own table Tαt .

This completes the proof of Lemma 1.

Theorem 3. The Steiner quadruple system obtained from the system SQS(HN ) by the switch-
ing method of the ijkl-components is embedded into the extended perfect code obtained from the
extended Hamming code HN by the switching method of the ijkl-components.
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Proof. The proof of Lemma 1 implies immediately that the switchings of the components of the Steiner
quadruple system SQS(HN ) are completely defined by the switchings of the corresponding components
of the extended Hamming code HN . Since il-, jl-, kl-, and ijkl-components of SQS(HN ) are the
subsets of the corresponding il-, jl-, kl-, and ijkl-components of HN ; therefore, the Steiner quadruple
system obtained by the switching method from the system SQS(HN ) is embedded into the perfect code
obtained by the switching method from HN .

The proof of Theorem 3 is complete.

It should be noted that, according to [1], the rank of the extended perfect code of length N obtained
from the extended binary Hamming code of length N by the switchings ijkl-components (and so the
rank of the Steiner quadruple system of order N obtained by the switching method of ijkl-components
from the Hamming Steiner quadruple system of order N ) is at most N − log N + 1.

Let us give the lower bound on the number of different Steiner quadruple systems of order N with
rank at most N − log N + 1 that are embedded into the extended perfect code of length N which is
constructed by the switching method ijkl-components:

Theorem 4. The number R(N) of different Steiner quadruple systems SQS(N) of orderN with
rank at most N − log N + 1 embedded into extended perfect codes is at least

(32 · 28 − 8)N(N−4)(N−8)/(3·29) · (2N(N−4)/25 − 1) · N(N − 1)(N − 2)
23

· R∗(N/4),

where R∗(N/4) = (N/4)!/((N/4 − 1)(N/4 − 2)(N/4 − 22) · · · (N/4)/2) is the number of different
Hamming Steiner quadruple systems of order N/4.

Proof. Consider the Hamming Steiner quadruple system SQS(HN ) constructed by the above approach
(see Theorem 1), its component Rabcl

ijkl from Lemma 1, and the following table for this component:

abcl ajbjcl jabjcl jajbcl jabjc jajbc jjabc jjajbjc

aibicl akbkcl jaibkcl jakbicl jaibkc jakbic jjaibic jjakbkc

iabicl iajbkcl kabkcl kajbicl jiabkc jiajbic jkabic jkajbkc

iaibcl akbjcl kaibjcl kakbcl jiaibjc jiakbc jkaibc jkakbjc

iabic iajbkc ijabkc ijajbic kabkc kajbic kjabic kjajbkc

iaibc iakbjc ijaibjc ijakbc kaibjc kakbc kjaibc kjakbjc

iiabc iiajbjc ikabjc ikajbc kiabjc kiajbc kkabc kkajbjc

iiaibic iiakbkc ikaibjc ikakbic kiaibkc kiakbic kkaibic kkakbkc

The rows correspond to the jl-components and the columns correspond to the il-components. Further
we need the following diagonals of this table that correspond to the kl-components Rabcl

ijkl :

D1 = {(a, b, c, l), (a, kb, kc, l), (ka, b, kc, l), (ka, kb, c, l),
(k, a, b, kc), (k, a, kb, c), (k, ka, b, c), (k, ka, kb, kc)},

D2 = {(a, jb, jc, l), (a, ib, ic, l), (ka, jb, ic, l), (ka, ib, jc, l),
(k, a, jb, ic), (k, a, ib, jc), (k, ka, jb, jc), (k, ka, ib, ic)},

D3 = {(ja, b, jc, l), (ja, kb, ic, l), (ia, b, ic, l), (ia, kb, jc, l),
(k, ja, b, ic), (k, ja, kb, jc), (k, ia, b, jc), (k, ia, kb, ic)},
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D4 = {(ja, jb, c, l), (ja, ib, kc, l), (ia, jb, kc, l), (ia, ib, c, l),
(k, ja, jb, kc), (k, ja, ib, c), (k, ia, jb, c), (k, ia, ib, kc)},

D5 = {(i, a, b, ic), (i, a, kb, jc), (i, ka, b, jc), (i, ka, kb, ic),
(j, a, b, jc), (j, a, kb, ic), (j, ka, b, ic), (j, ka, kb, jc)},

D6 = {(i, a, jb, kc), (i, a, ib, c), (i, ka, jb, c), (i, ka, ib, kc),
(j, a, jb, c), (j, a, ib, kc), (j, ka, jb, kc), (j, ka, ib, c)},

D7 = {(i, ia, b, c), (i, ia, kb, kc), (i, ja, b, kc), (i, ja, kb, c),
(j, ia, b, kc), (j, ia, kb, c), (j, ja, b, c), (j, ja, kb, kc)},

D8 = {(i, ia, ib, ic), (i, ia, jb, jc), (i, ja, ib, jc), (i, ja, jb, ic),
(j, ia, ib, jc), (j, ia, jb, ic), (j, ja, ib, ic), (j, ja, jb, jc)}.

At that, for each of 1–4 and 5–8 rows, the switchings l ↔ j and i ↔ k are possible correspondingly.
Note that the il-components are completely changed here.

If we first apply the corresponding given switchings to all rows of the table (i.e., for the ijkl-
component Rabcl

ijkl of cardinality 64) then, for each of the resultant 1–4 and 5–8 columns or 1–4
and 5–8 diagonals, the additional switchings j ↔ k and l ↔ i or i ↔ j and l ↔ k are also feasible
correspondingly.

Similarly, for each of the 1–4 and 5–8 columns (the 1–4 and 5–8 diagonals) of the table, the switch-
ings l ↔ i and j ↔ k (l ↔ k and i ↔ j) are possible correspondingly. In this case, the jl-components
(the kl-components) are completely changed. If we apply the corresponding given switchings first to
all columns (diagonals) of the table and then to each of the obtained 1–4 and 5–8 rows or 1–4 and
5–8 diagonals (1–4 and 5–8 rows or 1–4 and 5–8 columns), the additional switchings i ↔ k, l ↔ j or
i ↔ j, l ↔ k (i ↔ k, l ↔ j or j ↔ k, l ↔ i) are feasible correspondingly.

Thus, in each of 9 given cases of transformations of either only rows, columns, and diagonals
(transformations of the s1s2-components) or their pairwise combinations (transformations of the ijkl-
and corresponding s1s2-components), there can be 28 variants of switchings. Taking into account the
arising duplications (e.g., the result of switching of all rows and then all columns of the table coincide
with the result of switchings of all columns and then all rows of the table), we can conclude that there
exist at least 9 · 28 − 8 variants of changing the component Rabcl

ijkl .

By similar arguments for every other component of the type Rαt
ijkl, we can find at least 9 · 28 − 8

variants of changing Rαt
ijkl. It should be noted that in result of these transformations the quadruples

in SQS(HN ) are changed, but the obtained system remains a Steiner quadruple system, though not
Hamming.

Consider the component Rijkl. For each of its il-, jl-, or kl-subcomponents of the form

Ril + (j, a, ja, l), . . . , Ril + (a, b, ja, jb), Rjl + (k, a, ka, l), . . . , Rjl + (a, b, ka, kb),

and
Rkl + (i, a, ia, l), . . . , Rkl + (a, b, ia, ib),

where a, b ∈ M ′, the switchings l ↔ i, a ↔ ia, l ↔ j, a ↔ ja, l ↔ k, and a ↔ ka are possible corre-
spondingly. Here the il-, jl-, or kl-components are also completely changed, and at least

3 · (2N/4+(N−4)(N−8)/25−1 − 1)
variants of changing the component Rijkl are possible.

In result, since we can take every quadruple of the system SQS(HN ) as (i, j, k, l) and every of the
R∗(N/4) available different Hamming Steiner quadruple systems of order N/4 as the initial quadruple
system STS(N/4); therefore, we obtain

(32 · 28 − 8)N(N−4)(N−8)/(3·29 ) · 3 · (2N/4+(N−4)(N−8)/25−1 − 1)

· N(N − 1)(N − 2)
3 · 23

· ((N/4)!/(N/4 − 1)(N/4 − 2)(N/4 − 22) · · · (N/4)/2)
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possible switchings.
The proof of Theorem 4 is complete.

Note that the above-obtained bound is less than (2). The question remains open: Whether all Steiner
quadruple system from [5] are embedded into the extended perfect codes?

It should be also noted that the arguments, similar to those given in this work but much more
complicated, can be developed for the α-components of the extended perfect codes when |α| > 4.
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